Introduction to Basic Local Alignment Search Tool (BLAST)

Philip Ashton OUCRU

Why is sequence similarity important?

- DNA -> RNA -> Protein primary structure -> protein secondary structure -> protein tertiary structure
- Protein tertiary structure is of fundamental importance to the function of proteins
- If two proteins have similar sequences, they are likely to have similar structures
- Therefore, we can make inferences about protein function purely from sequence similarity measures

Where does biological variation come from?

- Biological sequences show complex patterns of similarity to each other
 - These patterns are often due to homology
 - Homologous sequences are those which share a common ancestor
- Sequences evolve due to natural selection acting on random variation
- Not all sequence changes we observe are due to natural selection, some are just due to genetic drift

Smith-Waterman/Needleman-Wunsch

- Needleman-Wunsch global alignment, 1970
- Smith-Waterman local alignment, 1981
- Guaranteed to find the best alignment (according to scoring criteria)
- Scales quadratically (requires as many calculations as the query length multiplied by the subject length)
- Too slow for many applications, but valuable if we want to be absolutely sure of the answer

Match	1 Score	e Mi	ismate	h Score	e G	ap Sco			
1		-1			-2	2			
		A	С	Т	A	Т	G	G	G
	0	-2	-4	-6	-8	-10	-12	-14	-16
A	-2	1	↓ -1	↓ -3	K ♦ -5	↓ -7	↓ -9	↓ -11	↓ -13
С	-4	↑ -1	× 2	↓ 0	↓ -2	← -4	↓ -6	← -8	↓ -10
A	-6	× ↑ -3	↑ 0	1	× 1	↓ -1	↓ -3	4 -5	↓ -7
т	-8	↑ -5	↑ -2	1	× 0	2	↓ 0	↓ -2	← -4
G	-10	↑ -7	↑ -4	 ↑ -1 	× 0	↑ 0	3	≮ ↓ 1	K ← -1
A	-12	× ↑ -9	↑ -6	↑ -3	× 0	-1	↑ 1	2	× ♦ 0
G	-14	↑ -11	↑ -8	↑ -5	↑ -2	-1	0	2	× 3

Needleman-Wunsch algorithm for global alignment:

1. Choose a scoring system 2. Fill in the table 3. Traceback from the cell on the bottom

5

A C T ATGG G AC-ATGAG

Score = 3

The better option – BLAST, Altschul et al., 1990

"Seed and extend"

- 1. Break the query into "words" 3 AA, 11 nt
- 2. Look for exact matches between the words in the query and in each subject in the database.
- 3. For each query-subject match extend the alignment, calculating a score as you go.
- 4. Stop calculating for alignments where score goes below a certain threshold

How do we score?

Nucleotide

Match +1 Mismatch -1 Gap -1

Ala	4																			
Arg	-1	5																		
Asn	-2	0	6									٨		•				•		
Asp	-2	-2	1	6								Δ	m	۱ľ	$\mathbf{)}\mathbf{O}$	∂				
Cys	0	-3	-3	-3	9							•				Ŭ				
Gln	-1	1	0	0	-3	5														
Glu	-1	0	0	2	-4	2	5													
Gly	0	-2	0	-1	-3	-2	-2	6												
His	-2	0	1	-1	-3	0	0	-2	8											
lle	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
Leu	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4									
Lys	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5								
Met	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
Phe	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Pro	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
Ser	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Thr	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
Trp	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Tyr	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
Val	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val

BLOSUM amino acid substitution matrix

Putting sequence similarity on a firm statistical footing

- BLAST provides an 'E-score' or 'E-value', E stands for Expectation
- It is the number of times you would expect to see an alignment with a similar score by chance
 - Lower is better; 10^{^-30} is a frequently used threshold
- E-value calculation depends on the size of the search space (the query and database size), and the score of the alignment

Example of BLAST output

Sequences producing significant alignments:

Select: All None Selected:0

AT	Alignments EDownload - GenPept Graphics Distance tree of results Multip	le align	ment				0
	Description	Max score	Total score	Query cover	E value	Ident	Accession
\Box	botulinum neurotoxin [Clostridium botulinum]	2637	2637	100%	0.0	100.00%	AFV13854.1
	botulinum neurotoxin type A [Clostridium botulinum]	2504	2504	100%	0.0	94.37%	WP_014520039.1
	botulinum neurotoxin type A [Clostridium botulinum]	2503	2503	100%	0.0	94.37%	WP_078992015.1
	botulinum neurotoxin type A [Clostridium botulinum]	2488	2488	100%	0.0	93.75%	WP_011948511.1
	botulinum neurotoxin type A [Clostridium botulinum]	2488	2488	100%	0.0	93.75%	WP_061316836.1
	neurotoxin A [Clostridium botulinum]	2488	2488	100%	0.0	93.67%	ABM73969.1
	RecName: Full=Botulinum neurotoxin type A; Short=BoNT/A; AltName: Full=Bontoxilysin-A	2487	2487	100%	0.0	93.67%	P0DPI0.1

Database is the complete non-redundant NCBI protein database

Example of hit with e-value and bit score etc.

Seq	Sequences producing significant alignments:								
Select: All None Selected:0									
Alignments 🔚 Download 🗸 GenPept Graphics Distance tree of results Multiple alignment									
	Description	Max score	Total score	Query cover	E value	Ident	Accession		
\Box	botulinum neurotoxin type A [Clostridium botulinum]	2488	2488	100%	0.0	93.75%	WP_011948511.1		
\Box	Chain A, Botulinum neurotoxin type A	594	594	25%	0.0	89.85%	6DKK_A		
	Chain A, Botulinum neurotoxin type A	590	590	25%	0.0	89.54%	6MHJ_A		
	peptidase M27 [Clostridium botulinum]	85.9	85.9	21%	9e-18	27.72%	WP_011948510.1		

Database is a single C. botulinum genome

BLAST is the most important piece of bioinformatics software*. Why?

- 1. The problem it solves, sequence similarity search, gives us a really powerful tool for identifying unknowns in the biological world
- 2. It is fast
- 3. It is reliable
- 4. It is flexible, can be used for many sequence analysis scenarios
- 5. It's so widely used that most biologists understand it as a verb

* BLAST paper has > 70,000 citations

(
	Search the web using Google!
	What is Google?
	10 results 🛟 (Google Search) (I'm feeling lucky)
Index	contains ~25 million pages (soon to be much bigger)

BLAST Glossary

- Query the sequence you are interested in
- Subject the specific sequence you are comparing against
- Database all the sequences you are comparing against

SubjectQuery

Database

BLAST vs web service

[flashton@Philips-MacBook-Pro:~/Dropbox/talaromyces_marneffii/phylo/results/2018.10.19\$ blastn -h
USAGE

blastn [-h] [-help] [-import_search_strategy filename] [-export_search_strategy filename] [-task task_name] [-db database_name] [-dbsize num letters] [-gilist filename] [-segidlist filename] [-negative gilist filename] [-entrez guery entrez guery] [-db_soft_mask filtering_algorithm] [-db_hard_mask filtering_algorithm] [-subject subject input file] [-subject loc range] [-guery input file] [-out output file] [-evalue evalue] [-word size int value] [-gapopen open penalty] [-gapextend extend penalty] [-perc_identity float_value] [-qcov_hsp_perc float_value] [-max hsps int value] [-xdrop ungap float value] [-xdrop gap float value] [-xdrop gap final float value] [-searchsp int value] [-sum_stats bool_value] [-penalty penalty] [-reward reward] [-no_greedy] [-min raw gapped score int value] [-template type type] [-template length int value] [-dust DUST options] [-filtering db filtering database] [-window masker taxid window masker taxid] [-window masker db window masker db] [-soft masking soft masking] [-ungapped] [-culling_limit int_value] [-best_hit_overhang float_value] [-best hit score edge float value] [-window size int value] [-off diagonal range int value] [-use index boolean] [-index name string] [-lcase masking] [-query loc range] [-strand strand] [-parse deflines] [-outfmt format] [-show gis] [-num descriptions int value] [-num_alignments int_value] [-line_length line_length] [-html] [-max target seqs num sequences] [-num threads int value] [-remote] [-version]

DESCRIPTION

Nucleotide-Nucleotide BLAST 2.4.0+

Use '-help' to print detailed descriptions of command line arguments

Repeats

- Simple
 - Repeats of the same nucleotide e.g. TTTTTTTTTTTTTT
 - Repeats of the same di-nucleotide e.g. CACACACACACACA
 - Repeats of the same tri-nucleotide e.g. TGCTGCTGCTGC
 - Etc
- Complex
 - Non-coding RNAs like ribosomal RNA E. coli has 7 identical copies of rRNA encoding locus
 - Transposons 'jumping genes', and their 'cargo' (e.g. AMR genes)
 - Repeated protein domains

Different types of BLAST

Program	Query sequence type	Target sequence type	
BLASTP	Protein	Protein	Compares an amino acid query sequence against a protein sequence database
BLASTN	Nucleotide	Nucleotide	Compares a nucleotide query sequence against a nucleotide sequence database
BLASTX	Nucleotide (translated)	Protein	Compares a nucleotide query sequence translated in all reading frames against a protein sequence database
TBLASTN	Protein	Nucleotide (translated)	Compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames
TBLASTX	Nucleotide (translated)	Nucleotide (translated)	Compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database

Introduction to Salmonella serotyping

- Kauffman-White scheme
- 46 O antigens (lipopolysaccharide)
- 85 H antigens (flagellar)
- 1500 combinations in subsp enterica
- O antigen; phase 1; phase 2
- E.g. S. Paratyphi A is 1,4,5,12; b; 1,2

Further reading

- BLAST; Korf, Bedell, Yandell; O'Reilly Media; 2003
 - http://shop.oreilly.com/product/9780596002992.do
- Having a BLAST with bioinformatics, Pertsemlidis & Fondon, 2002
 - <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138974/</u>