25th - 29th March 2019

Genome Assembly

Activities

- A paper genome assembly
- *de novo* Assembly of a bacterial genome sequence from an Illumina readset
- Annotation of the draft genome sequence

The first analysis step is either:

• de novo assembly

- reconstruct the original sequences from reads alone
- like a jigsaw puzzle but ambiguous

• Align to reference (Read Mapping)

- \circ find where reads fit on a known sequence
- can not always be uniquely placed

- Reconstruct the original DNA sequences using the sequence reads alone
- When is *de novo* assembly required?
 - new "non-model" organisms
 - no sufficiently related reference genome
 - novel DNA segments
 - novel RNA transcripts and splice variants
 - discover fusion genes
 - identify contamination

- One contig per chromosome/plasmid
 - not with current Illumina sequencing technology

Long Reads

- One contig per Chromosome?
 - When Reads are longer than Longest Repeated in a genome
 - Bacteria: rRNA operons, transposons: longest ~7 kb
 - PacBio, Oxford Nanopore Reads longer than 7 kb
- Still expensive
 - \circ $\,$ extra information does not always justify the extra cost $\,$

What Purpose?

- Reconstruction of the genome sequence
 - conservative (no false joins!)
- Output?
- A set of Contigs multi-fasta file

Software?

Illumina reads: Velvet, MegaHit or SPAdes Shovill
Unicycler

Exercise: Paper genome assembly

Assemble these 45 sequences

_ass _gen _gen mbly acte al_g al_g al_g al_g al_g al_g asse asse asse bact cter cter cter cter e_as e_as e_as enom enom eria gejo geno ial_ ial_ ial_ me_a me_a me_a mial ome_ ome_ ome_ ome_ me_a rial rial semb semb teri

Answer

bacterial_genome_assembly

Assessing assembly quality

- How many contigs?
- How long are the contigs?
- How correct are the contigs?