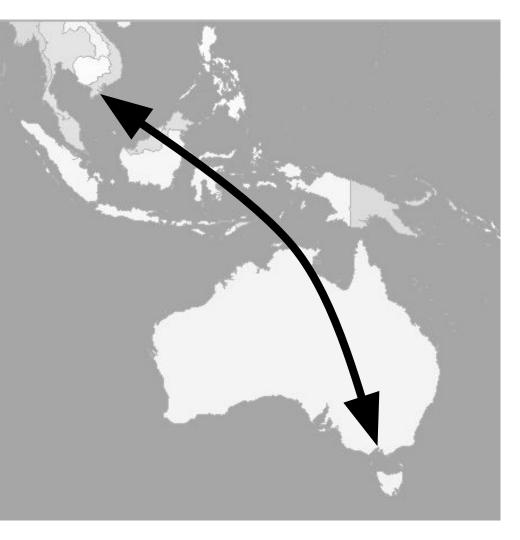
How genomics and bioinformatics is transforming clinical and public health microbiology in Australia


> A/Prof Torsten Seemann @torstenseemann

The University of Melbourne

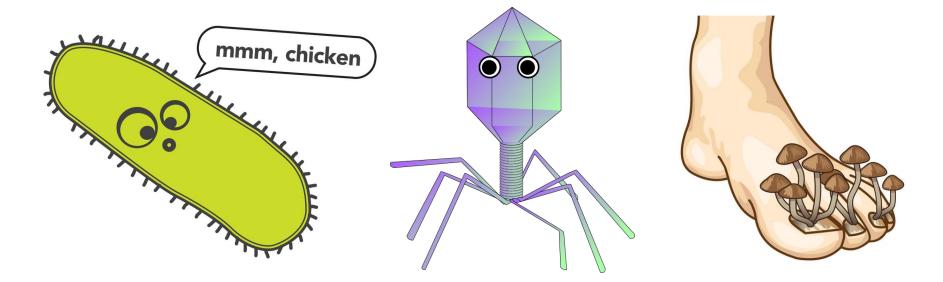
Introduction

Neighbours

The Royal Melbourne Hospital

"Immunity and infection"

- Research
- Teaching
- Public health and reference labs
- Diagnostic services
- Clinical care in ID and immunity


Microbiological Diagnostics Unit

- Oldest public health lab in Australia
 - established 1897 in Melbourne
 - historical ~600,000 isolate collection back to 1950s
- National reference laboratory
 - Salmonella, Listeria, EHEC
- W.H.O regional reference lab
 - vaccine preventable invasive bacterial pathogens



Bacteria + Viruses + Fungi

Foodborne, human (clinical), animal and environmental samples

Lots of genome sequencing



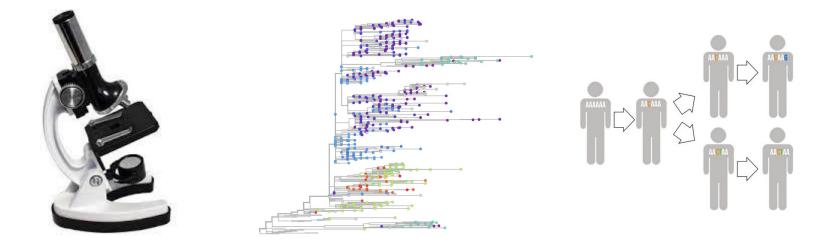
Software tools for bacterial genomics

Torsten Seemann

tseemann

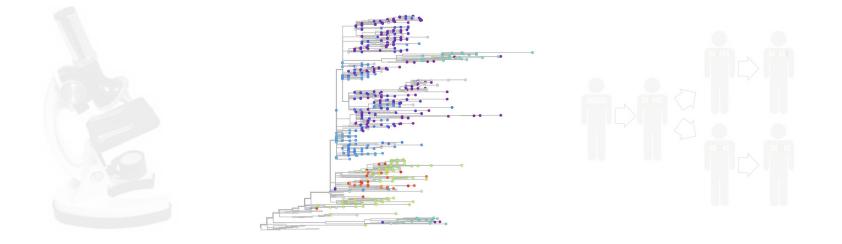
Bioinformatician, microbial genomics

Edit bio

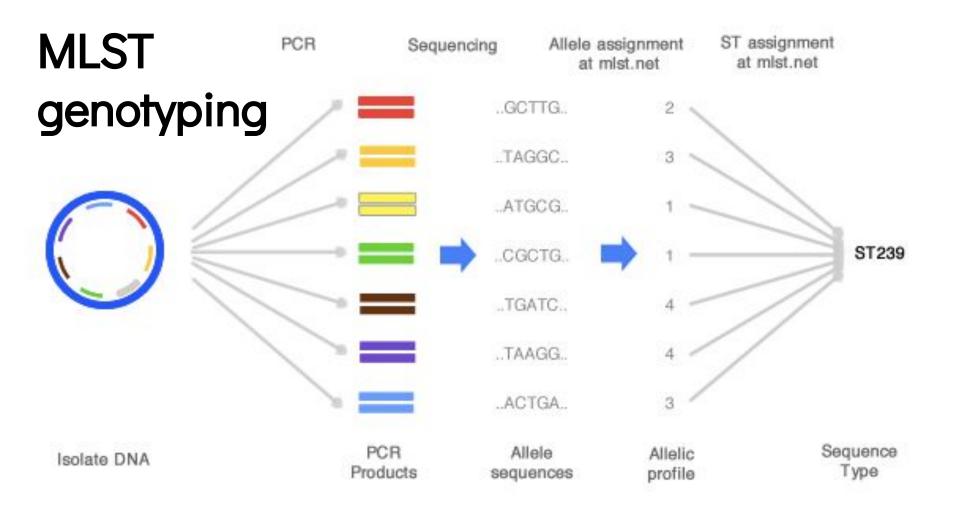

Le The University of Melbourne Melbourne, AUSTRALIA

The https://tseemann.github.io/

Pinned repositories	Customize your pinned repositorie
≡ prokka	≡ snippy
✤ apid prokaryotic genome annotation	ℜ ∳ Rapid bacterial SNP calling and core genome alignments
● Perl ★ 174 😵 87	● Perl ★ 86 ¥ 23
≡ shovill	≡ abricate
Faster SPAdes assembly of Illumina reads	Mass screening of contigs for antimicrobial and virulence genes
● Perl ★ 64 💱 11	● Perl ★ 57 😵 12
≡ nullarbor	≡ mlst
Reads to report" for public health and clinical microbiology	Scan contig files against PubMLST typing schemes
● Perl ★ 53 😵 13	● Perl ★ 37 😵 11


Traditional public health and clinical microbiology

The roles of a public health laboratory

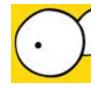

Diagnostics Surveillance Outbreak response

The roles of a public health laboratory

Diagnostics

Surveillance Outbreak response

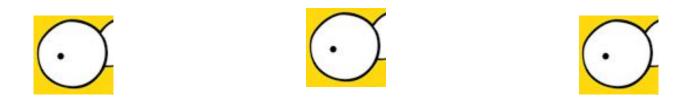
Other schemes


- :: Spa *S.aureus*
- :: EMM S. pyogenes
- :: SBT L.pneumophila
- :: NG-MAST N.gonorrhea
- :: MLVA Salmonella enterica
- :: MIRU VNTR *M.tuberculosis*
- :: Ribotyping *Clostridium sp.*

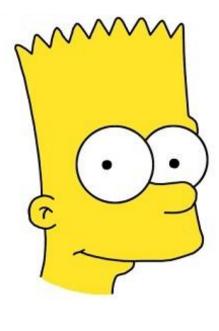
Pathogen: Homerbacter simpsonii

Focus on a small informative section

Genotyping via one or more marker genes.


Another sample arrives at the lab

Looks related.


Another sample from same city

Possible outbreak?

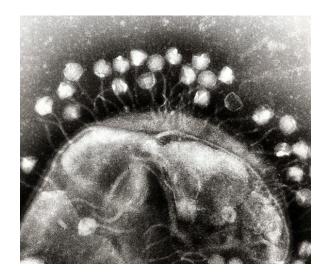
D'oh!

Case study

The Advertiser

SA Health investigating seven salmonella cases with possible link to toxic salad recalled nationwide

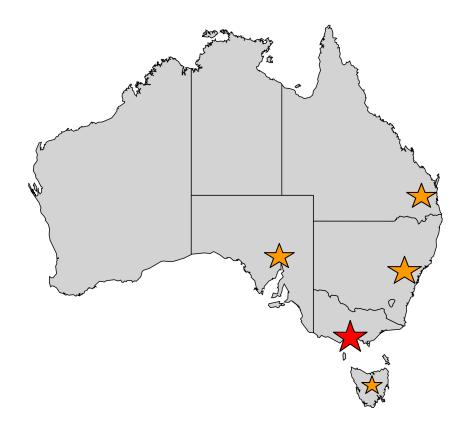
Katrina Stokes, Health Reporter, The Advertiser February 5, 2016 9:38pm


- 'Toxic salad' victim's absolute agony
- Salmonella outbreak linked to prepacked lettuce

SOUTH Australian health authorities predict more people will be struck down with salmonella in coming days because they have eaten contaminated prepacked lettuce sold in major supermarket chains across the nation.

Salmonella typing

- :: Serotyping
 - : O, H, Vi antigens -> 2500 serovars
- :: Phage typing
 - : Panel of 34 phage -> 200 phage types
- :: MLVA (multilocus variable tandem repeat)
 - : 5 locii -> 100s of MLVA types
- :: MLST (multilocus sequence typing)
 - : 7 locii -> 3000 sequence types

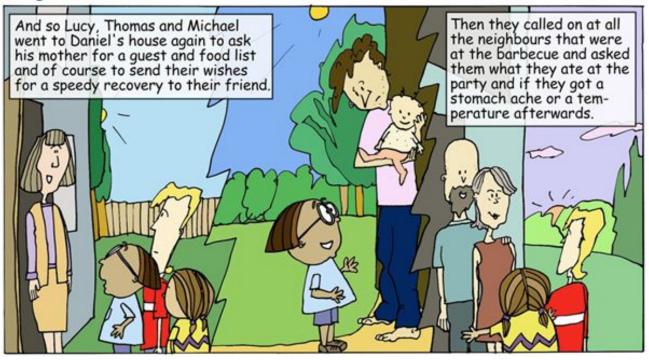


The outbreak begins

- :: Started in Victoria
- :: <100 samples
- :: Sero identical
- :: Phage identical
- :: MLVA identical
- :: MLST identical

The outbreak spreads

- :: Spreads interstate
- :: 100s of samples
- :: Sero identical
- :: Phage identical
- :: MLVA identical
- :: MLST identical


So now what? Epidemiology!

The Disease Detectives detect patterns of disease in their line list

Good - but includes wasted time & effort

The Disease Detectives conducting a cohort study in their neighbourhood

How can we improve this?

Of course you know the answer.

Whole genome sequencing

:: Use 100% of the genome

- :: Single nucleotide resolution
 - : Infer source and transmission of infection
- :: Full complement of genes
 - : Track mobile elements and antimicrobial resistance

Routine sequencing of isolates

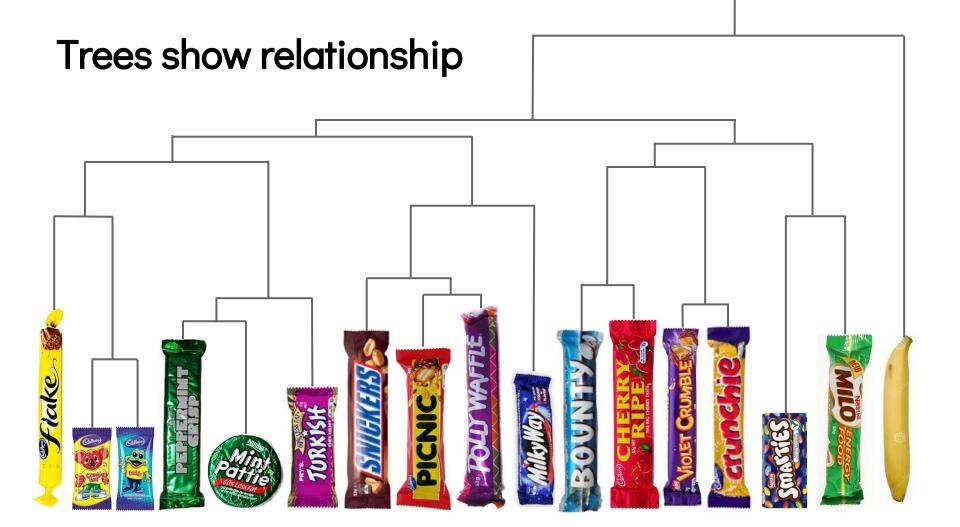
Species identification

1.04	1046	1046	U	0	unclassified
98.96	99624	142	-	1	root
98.81	99473	1	-	131567	cellular organisms
98.81	99472	194	D	2	Bacteria
98.57	99233	111	P	1224	Proteobacteria
98.45	99110	318	С	1236	Gammaproteobacteria
98.07	98728	0	0	91347	Enterobacteriales
98.07	98728	52477	F	543	Enterobacteriaceae
44.95	45256	665	G	561	Escherichia
44.20	44498	33391	S	562	Escherichia coli
8.84	8899	8899	-	1274814	Escherichia coli APEC 078
0.29	287	0	-	244319	Escherichia coli 026:H11
0.29	287	287	-	573235	Escherichia coli O26:H11 str 11368
0.21	216	216	-	316401	Escherichia coli ETEC H10407
0.19	193	0	-	168807	Escherichia coli 0127:H6
0.19	193	193	-	574521	Escherichia coli 0127:H6 str E2348/69

Antimicrobial resistance

Column	Description
FILE	The filename this hit came from
SEQUENCE	The sequence in the filename
START	Start coordinate in the sequence
END	End coordinate
GENE	ABR gene
COVERAGE	What proportion of the gene is in our sequence
COVERAGE_MAP	A visual represenation
GAPS	Was there any gaps in the alignment – possible pseudogene?
%COVERAGE	Proportion of gene covered
%IDENTITY	Proportion of exact nucleotide matches
DATABASE	The database this sequence comes from
ACCESSION	The genomic source of the sequence

Example Output


#FILE	SEQUENCE	START	END	GENE	COVERAGE	COVERAGE_MAP	GAPS	%COVERAGE	%IDENTITY	DATABASE
6159.fna	NC_017338.1	39177	41186	mecA_15	1-2010/2010		0/0	100.00	100.000	resfinder
6159.fna	NC_017338.1	727191	728356	norA_1	1-1166/1167		0/0	99.91	92.367	resfinder
6159.fna	NC_017339.1	10150	10995	blaZ_32	1-846/846		0/0	100.00	100.000	resfinder

Virulome

Isolate 🔺	Found	Cj1135	Cj1136	Cj1137c	Cj1138	Cj1416c	Cj1417c	Cj1419c	Cj1420c	Cj1421c	Cj1422c	Cj1427c	Cj1432c	Cj1434c	Cj1435c	Cj1436c	Cj1437c	Cj1438c	Cj1440c	Cjp54	acfB	cadF	cheA	cheV	cheV3	cheW	cheY
17N3018F1	89	~		?	?															1		~	~	~		~	<
17N3051F1	89	~		?	?		-				1	323							3 . 3			~	~	~		~	~
17N3260F1	91	~		?	?																?	~	~	~		~	~
17Q3023F1	80	~	843	848	?		-				843	343						14	843	242		~	~	~	?	~	~
17Q3053F1	91	•		?	?																	•	~	~		~	~
17Q3073F1	78	¥.	343	848			-		2	14	343	- 343	-	1				14	343	242		~	~	~	?	~	~
17Q3076F1	84	~																				~	~	~	?	~	~
17Q3084F2	83	14	343	848	2	1	-			1	343	1.843						1	343			~	~	~	?	~	~
17Q3099F1	90	•		?		~	~	~	~													•	~	~	?	~	~
17Q3129F1	90	~	~	542	?		-			1	840	1.843						14	343	242		~	~	~	?	~	~
17V1004H1	102	~	~			~	~	?	~	?		•								~		•	~	~	?	~	~

Pan genome content (genes)

17N3018F1	1573
17N3051F1	1594
17N3260F1	1565
17Q3023F1	1664
17Q3053F1	1626
17Q3073F1	1642
17Q3076F1	1785
17Q3084F2	1743
17Q3099F1	1527
17Q3129F1	1565
17V1004H1	1627
17V1007H1	1587
17V3023F1	1539
18A3066F1	1752
18A3072F1	1715
18A3073F1	1712
18A3074F1	1694
18N1003H1	1535
18N1004H1	1551
18N3006F1	1558
18N3027F1	1665

Every SNP is sacred

- :: Chocolate bar tree
 - : branches were based on phenotypic attributes
 - : size, colour, filling, texture, ingredients, flavour
- :: Genomic trees
 - : want to use every part of the genome sequence
 - : need to find all differences between isolates
 - : show me the SNPs!

Finding differences

Collate reference alignments

- bug1 GATTACCAGCATTAAGG-TTCTCCAATC
- bug2 GAT---CTGCATTATGGATTCTCCATTC
- bug3 G-TTACCAGCACTAA----CCAGTC

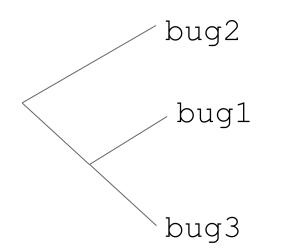
The reference is a "middle man" to generate a "pseudo" whole genome alignment.

Core genome

- bug1 GATTACCAGCATTAAGG-TTCTCCAATC
- bug2 GAT---CTGCATTATGGATTCTCCATTC
- bug3
 G-TTACCAGCACTAA----CCAGTC

 core
 I
 IIIIII
 IIIIII

Core sites are present in **all** genomes.

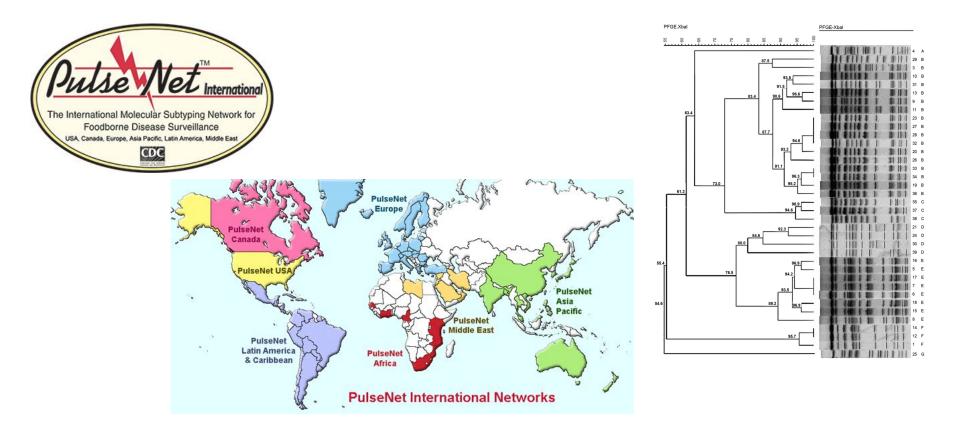

Core SNPs

bug1GATTACCAGCATTAAGG-TTCTCCAATCbug2GAT---CTGCATTATGGATTCTCCATTCbug3G-TTACCAGCACTAA----CCAGTCcore| | |||||||||||||SNPs| | | ||||||

Core SNPS = polymorphic sites in core genome

Infer phylogeny from aligned core SNPs

bug1	ATAA
bug2	TTTT
bug3	ACAG

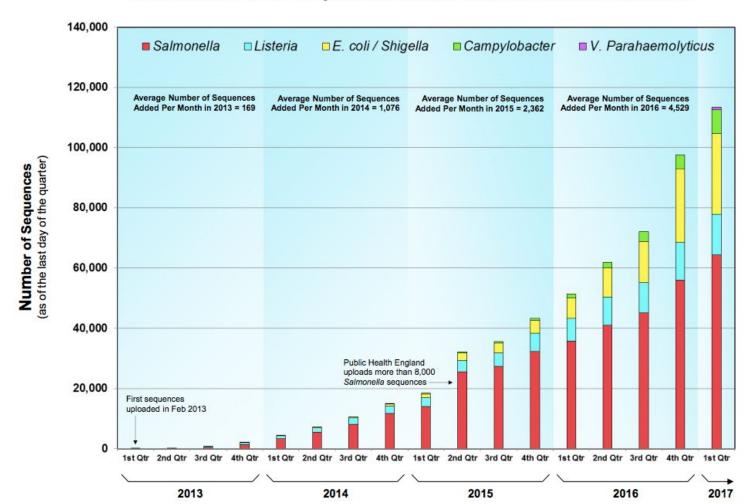


This is the primary information given to to tree building software.

Neighbour joining Minimum evolution Maximum likelihood Bayesian models

Pathogens without borders

The success of Pulse Net



GenomeTrakr

- :: International cooperation
 - : Led by FDA + NCBI
 - : >60 collaborating institutes inc. UK PHE, DK DTU, MX
 - : Salmonella, L.mono, E.coli, Campy, Vibrio
- :: Public SRA BioProject #183844
 - : Real-time submission of WGS genome reads
 - : Nightly updates of phylogenomic trees
 - : Contains ~60,000 strains of *Salmonella*

Total Number of Sequences in the GenomeTrakr Database

Listeria monocytogenes

GenomeTrakr project Listeria monocytogenes, MDU PHL, Australia

Whole genome sequencing of Listeria monocytogenes isolates as part of MDU PHL routine national surveillance activities

Accession	PRJNA317408	
Data Type	Raw sequence reads	
Scope	Multiisolate	
Organism	Listeria monocytogenes [Taxonomy ID: 1639] Bacteria; Firmicutes; Bacilli; Bacillales; Listeriaceae; Listeria; Listeria monocytogenes	
Submission	Registration date: 5-Apr-2016 Microbiological Diagnostics Unit	
Relevance	Medical	p

Project Data:

Resource Name	Number of Links
SEQUENCE DATA	
SRA Experiments	180
OTHER DATASETS	
BioSample	181

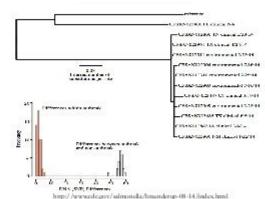
Bill Klimke

NAVIGATE UP

This project is a component of the Listeria monocytogenes

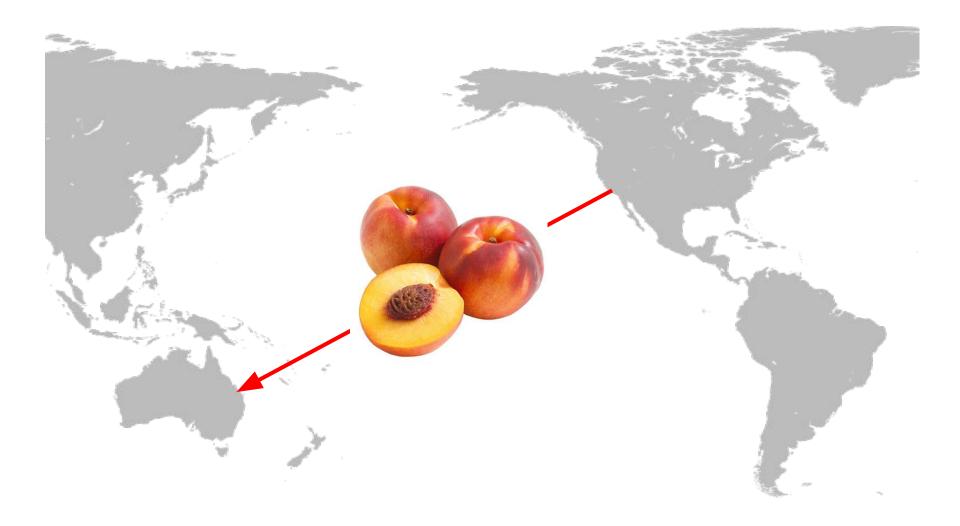
NAVIGATE ACROSS

403 additional projects are related by organism.


33 additional projects are components of the Listeria monocytogenes.

180 x Listeria monocytogenes

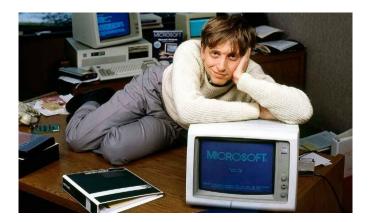
	II-EAS121:4:100:1783:550#0/1 TACGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACGGATCTCGTATGCGGTCTGCTGCGTGACAAGACAGGG
	II-EAS121:4:100:1783:550#0/1
	aa`b_aa`aa`YaX]aZ`aZM^Z]YRa]YSG[[ZREQLHESDHNDDHNMEEDDMPENITKFLFEEDDDHEJQMEDD
6 HA	TI-EAS121:4:100:1783:1611#0/1
GGG	TGGGCATTTCCACTCGCAGTATGGGTTGCCGCACGACAGGCAGCGGTCAGCCTGCGCTTTGGCCTGGGCCTTCGGAA
	<pre>II-EAS121:4:100:1783:1611#0/1</pre>
a``	^\`_^^a`a`^a_^_]a_]\]`a^^^`]X]_]XTV_\]]NX_XVX]]_TTTTG[VTHPN]VFD
0 HW	MI-EAS121:4:100:1783:322#0/1
CGT	TTATGTTTTTGAATATGTCTTATCTTAACGGTTATATTTTAGATGTTGGTCTTATTCTAACGGTCATATATTTTCT
+HW	II-EAS121:4:100:1783:322#0/1
aba	a`^aaaaabbbaababbbbbb`bbbb bbbbbbbbbbbbb
	TT-EAS121:4:100:1783:1394#0/1
GGG	TCTTTATT6GTCT6GT6ATCCCCCATATTCTCC6GTTGT6T6GTTTAACC6ATCATC6C6CATTACTTCCC66CT6
	TT-FAS121:4:100:1783:1394#0/1
	[aa\b^^[]aabbb][`a abbb`a``bbbbbabaabaaaab VZa ^ bab X`[a\HV [] [^ X\T VQ
	T_EAS121:4:100:1783:207#0/1
	TEGGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTGAAAAAAAA
	ITEGERGATEGEARGAGEGETTEAGEAGGAATGEEGAGACEGATETEGTATGEEGTETTETGETTGAAAAAAAAAA
	a`Xa\^\\`aa]ba_bba[a_0_a`aa`aa`a]^V]X_a^YS\R_\H_[]\ZTDUZZUSOPX]]POP\GS\WSHH
	JI-EAS121:4:100:1783:455#0/1
	TAATTCAGGGACAATGTAATGGCTGCACAAAAAAATACATCTTTCATGTTCCATTGCACCATTGACAAATACATAT
	JI-EAS121:4:100:1783:455#0/1
abb	_babbabaabbbbbbbbbbbbbbbbba\`b`\abbbabbbbbbbb


Nightly updates to find new matches

	CFSAN023458 2014-07-31 USA:CA white nectarines fire pearl variety			
	MOD1_LS980 2014-07-31 USA:CA white nectarine			
	DMG1500442 2014 Australia human			
	MOD1_LS1008 2014-07-31 USA:CA yellow nectarine	≤2 SNPs		
	MOD1_LS982 2014-07-31 USA:CA yellow nectarine			
	CFSAN023469 2014-07-31 USA:CA peaches			
	MOD1_LS984 2014-07-31 USA:CA yellow nectarine			
	CFSAN023462 2014-07-31 USA:CA peaches			
	FDA00008144 2014 USA:CA nectarine			
PNUSAL000137 2013-08-01 USA Blood	-	-		
MOD1_LS994 2014-07-31	USA:CA white peach			
MOD1_LS992 2014-07-31 USA:CA white peach				
MOD1_LS1003 2014-07-31 USA:CA white peach				
MOD1_LS998 2014-07-31 USA:CA white peach				
MOD1_LS1006 2014-07-3	1 USA:CA white peach			
MOD1_LS989 2014-07-31	USA:CA white peach			
	FDA00008143 2014 USA:CA nectarine			
MOD1_LS1001 2014-07-31 USA:CA white peach				
MOD1_LS991 2014-07-31 USA:CA white peach				
	CFSAN023464 2014-07-31 USA:CA peaches			
	MOD1_LS985 2014-07-31 USA:CA yellow nectarine			
	CDPHFDLB-F14M01297.C3 2014-07-28 USA:CA nectarines			
	FDA00008859 2014 USA open fruit peach			
	FDA00008256 2014-08-26 USA:CA environmental sample			
	CDPHFDLB-F14M01297.C1 2014-07-28 USA:CA nectarines			
	CFSAN023471 2014-07-31 USA:CA peaches			
	CFSAN023470 2014-07-31 USA:CA peaches			
	FDA00008263 2014-08-26 USA:CA environmental sample			

Clinical Infectious Diseases

Article Navigation


Sharing Is Caring: International Sharing of Data Enhances Genomic Surveillance of Listeria monocytogenes @

Jason C. Kwong 🖾, Russell Stafford, Errol Strain, Timothy P. Stinear, Torsten Seemann, Benjamin P. Howden

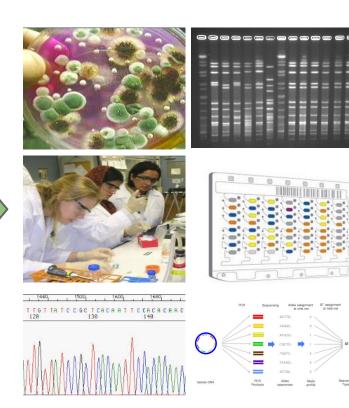
Clin Infect Dis (2016) 63 (6): 846-848. **DOI:** https://doi.org/10.1093/cid/ciw359 **Published:** 09 June 2016

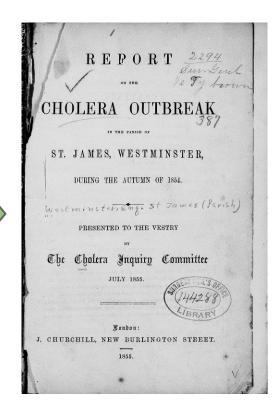
What is preventing sharing?

A vision for Australia (and the world)

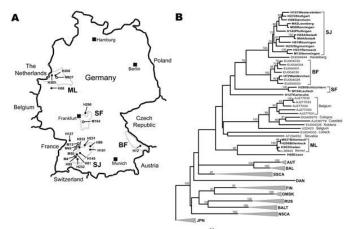
"AusTrakka"

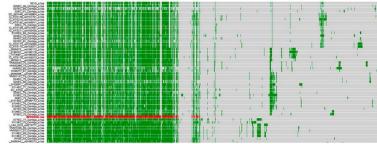
- : A shared online system for all Australian labs
 - : upload samples
 - : automated standard/specific analyses in real time
 - : simple reports and visualization
 - : easy to submit to international archives (SRA)
- :: Access control
 - : each lab controls their own data
 - : jurisdictions can share data in national outbreaks

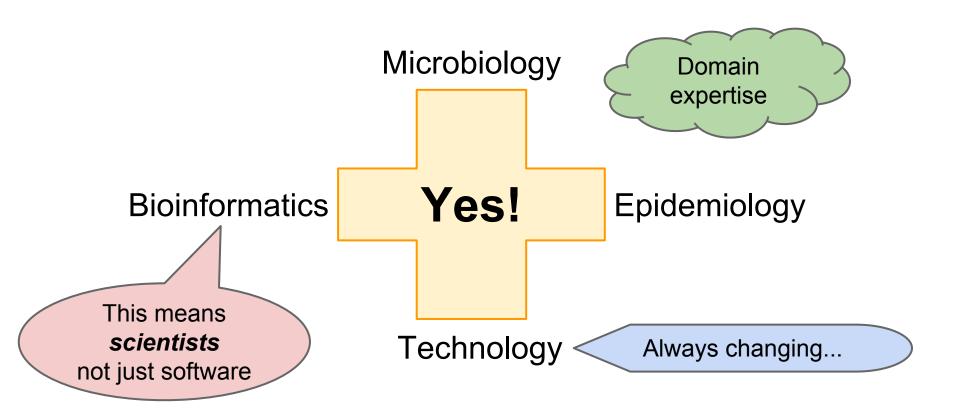


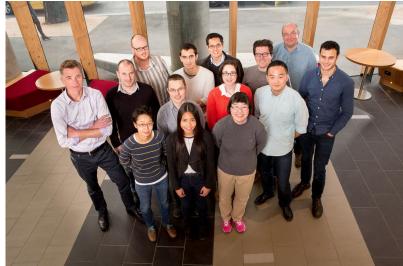

Conclusions

Traditional workflow






Modern workflow


Does WGS deliver?

Acknowledgements

Phil Ashton Liz Batty Thuy Vo Thi **Dieter Bulach** Cat Anscombe Hai Ho + my Melbourne colleagues

Thank you for listening

The End